

Name

ANSWERS

Class

www.MathsTeacherHub.com

Parallel and perpendicular lines

(9 – 1) Topic booklet

Higher

These questions have been collated from previous years GCSE Mathematics papers.

You must have: Ruler graduated in centimetres and millimetres, protractor, pair of compasses, pen, HB pencil, eraser.

Total Marks

Instructions

- Use black ink or ball-point pen.
- Fill in the boxes at the top of this page with your name, centre number and candidate number.
- Answer all questions.
- Answer the questions in the spaces provided
 - there may be more space than you need.
- Diagrams are NOT accurately drawn, unless otherwise indicated.
- You must show all your working out.
- If the question is a 1H question you are not allowed to use a calculator.
- If the question is a 2H or a 3H question, you may use a calculator to help you answer.

Information

- The marks for each question are shown in brackets
 - use this as a guide as to how much time to spend on each question.

Advice

- Read each question carefully before you start to answer it.
- Keep an eye on the time.
- Try to answer every question.
- Check your answers if you have time at the end.

Answer ALL questions
Write your answers in the space provided.
You must write down all the stages in your working.

6 The equation of the line L_1 is $y = 3x - 2$
The equation of the line L_2 is $3y - 9x + 5 = 0$

Show that these two lines are parallel.

$$L_2 \quad 3y - 9x + 5 = 0$$

$$3y = 9x - 5$$

$$y = 3x - \frac{5}{3}$$

Both L_1 and L_2 have a gradient of 3
so they are parallel.

9 Here are the equations of two straight lines.

$$y = \frac{1}{2}x - 6$$

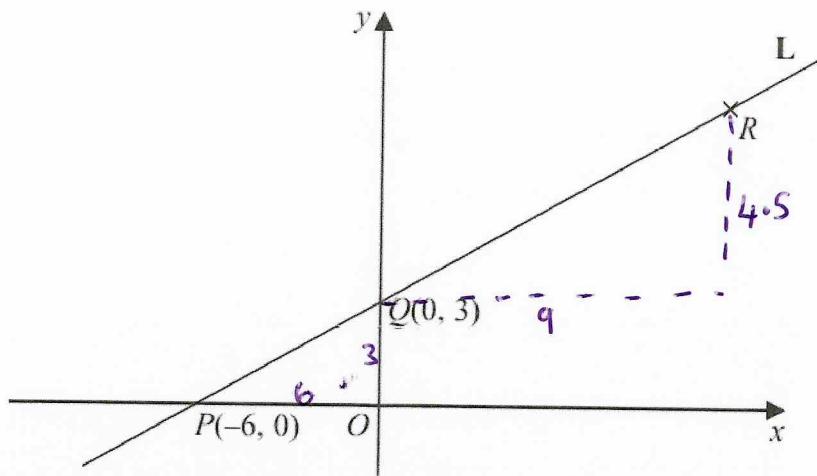
$$6y = 3x + 7$$

Oscar says that these lines are parallel.

Is Oscar correct?

You must give a reason for your answer.

$$y = \frac{3x}{6} + \frac{7}{6}$$


$$y = \frac{1}{2}x + \frac{7}{6}$$

Oscar is correct, both lines have a gradient of $\frac{1}{2}$, which means they are parallel.

November 2022 – Paper 2H

(Total for Question 9 is 2 marks)

11 Here is a sketch of the line L.

The points $P(-6, 0)$ and $Q(0, 3)$ are points on the line L.

The point R is such that PQR is a straight line and $PQ:QR = 2:3$

(a) Find the coordinates of R.

(.....,)
(2)

(b) Find an equation of the line that is perpendicular to L and passes through Q.

$$L: y = \frac{1}{2}x + 3$$

$$Q = (0, 3)$$

$$L_2: y = -2x + c$$

$$3 = -2(0) + c$$

$$3 = c$$

$$y = -2x + 3$$

(3)

12 The straight line L has equation $2y = 3x - 7$

Find an equation of the straight line perpendicular to L that passes through $(6, -5)$

$$L: y = \frac{3}{2}x - \frac{7}{2}$$

x y

$$L_1: y = -\frac{2}{3}x + C$$

$$-5 = -\frac{2}{3}(6) + C$$

$$-5 = -\frac{12}{3} + C$$

$$-5 = -4 + C$$

$$-1 = C$$

$$y = -\frac{2}{3}x - 1$$

November 2023 – Paper 1H

(Total for Question 12 is 3 marks)

12 The equation of the line L_1 is $y = 2x + 3$

The equation of the line L_2 is $5y - 10x + 4 = 0$

Show that these two lines are parallel.

$$L_2: 5y - 10x + 4 = 0$$

$$5y = 10x - 4$$

$$y = \frac{10x}{5} - \frac{4}{5}$$

$$y = 2x - \frac{4}{5}$$

Both L_1 and L_2 have a gradient of $2x$

so they are parallel.

June 2022 – Paper 2H

(Total for Question 12 is 2 marks)

15 The straight line L_1 has equation $y = 3x - 4$

The straight line L_2 is perpendicular to L_1 and passes through the point (9, 5)

Find an equation of line L_2

x y

$$L_2 = y = -\frac{1}{3}x + C$$

$$5 = -\frac{1}{3}(9) + C$$

$$5 = -\frac{9}{3} + C$$

$$5 = -3 + C$$

$$8 = C$$

$$y = -\frac{1}{3}x + 8$$

November 2020 – Paper 1H

(Total for Question 15 is 3 marks)

15 The equation of line L_1 is $y = 2x - 5$
The equation of line L_2 is $6y + kx - 12 = 0$
 L_1 is perpendicular to L_2

Gradient of $L_1 = 2$
Gradient of $L_2 = -\frac{1}{2}$

Find the value of k .
You must show all your working.

$$6y + kx - 12 = 0$$

$$6y = -kx + 12$$

$$y = -\frac{kx}{6} + \frac{12}{6}$$

↓

$$-\frac{1}{2}$$

$$k = 3$$

June 2023 – Paper 1H

(Total for Question 15 is 3 marks)

16 The straight line L has the equation $3y = 4x + 7$

The point A has coordinates $(3, -5)$

x y

Find an equation of the straight line that is perpendicular to L and passes through A.

$$L_1 \quad 3y = 4x + 7$$

$$y = \frac{4x}{3} + \frac{7}{3}$$

$$L_2 \quad y = -\frac{3}{4}x + C$$

$$-5 = -\frac{3}{4}(3) + C$$

$$-5 = -\frac{9}{4} + C$$

$$-5 = -2\frac{1}{4} + C$$

$$-2\frac{3}{4} = C$$

$$y = -\frac{3}{4}x - 2\frac{3}{4}$$

June 2019 – Paper 2H

(Total for Question 16 is 3 marks)

19 The point P has coordinates $(3, 4)$
The point Q has coordinates (a, b)

A line perpendicular to PQ is given by the equation $3x + 2y = 7$

Find an expression for b in terms of a .

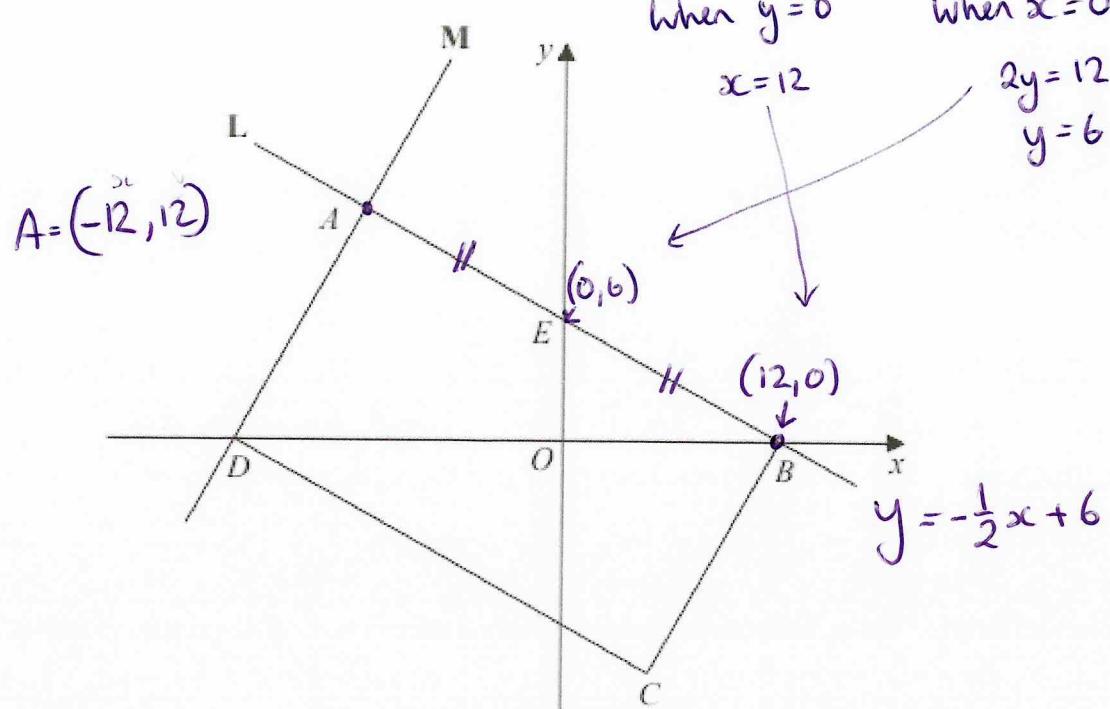
$$2y = -3x + 7$$

$$y = -\frac{3x}{2} + \frac{7}{2}$$

$$PQ \quad y = \frac{2}{3}x + C$$

$$4 = \frac{2}{3}(3) + C$$

$$4 = \frac{6}{3} + C$$


$$4 = 2 + C$$

$$2 = 2$$

$$y = \frac{2}{3}x + 2$$

$$b = \frac{2}{3}a + 2$$

19

$ABCD$ is a rectangle.

A, E and B are points on the straight line L with equation $x + 2y = 12$
 A and D are points on the straight line M .

$$AE = EB$$

Find an equation for M .

$$M: y = 2x + c$$

$$12 = 2(-12) + c$$

$$12 = -24 + c$$

$$36 = c$$

$$2y = -x + 12$$

$$y = -\frac{1}{2}x + 6$$

$$m = -\frac{1}{2}x$$

$$y = 2x + 36$$

19 A triangle has vertices P , Q and R .

The coordinates of P are $(-3, -6)$

The coordinates of Q are $(1, 4)$

The coordinates of R are $(5, -2)$

M is the midpoint of PQ .

N is the midpoint of QR .

Prove that MN is parallel to PR .

You must show each stage of your working.

$$\begin{aligned}M &= (-3, -6) \\&+ (1, 4) \\&\hline (-2, -2) \\&\div 2 (-1, -1)\end{aligned}$$

$$\begin{aligned}N &= (1, 4) \\&+ (5, -2) \\&\hline (6, 2) \\&\div 2 (3, 1)\end{aligned}$$

$$PR = \overset{P}{(-3, -6)} \rightarrow \overset{R}{(5, -2)}$$

$$MN = \overset{M}{(-1, -1)} \rightarrow \overset{N}{(3, 1)}$$

$$\frac{\Delta y}{\Delta x} = \frac{4}{8} = \frac{1}{2}$$

$$\frac{\Delta y}{\Delta x} = \frac{2}{4} = \frac{1}{2}$$

$$PR \text{ gradient} = \frac{1}{2}$$

$$MN \text{ gradient} = \frac{1}{2}$$

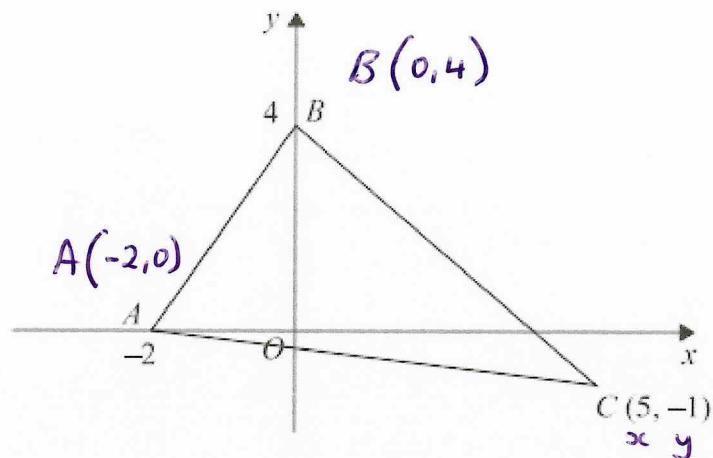
Both lines have the same gradient
so they are parallel.

22 Given that the vector $a\begin{pmatrix} 2 \\ 6 \end{pmatrix} + b\begin{pmatrix} 8 \\ 2 \end{pmatrix}$ is parallel to the vector $\begin{pmatrix} 13 \\ 6 \end{pmatrix}$
find an expression for b in terms of a .

$$2a + 8b = 13x$$

$$6a + 2b = 6x$$

$$\frac{2}{13}a + \frac{8}{13}b = x$$


$$\frac{6}{6}a + \frac{2}{6}b = x$$

$$\left. \begin{array}{l} \frac{2}{13}a + \frac{8}{13}b = a + \frac{1}{3}b \\ \frac{8}{13}b = \frac{11}{13}a + \frac{1}{3}b \\ \frac{11}{39}b = \frac{11}{13}a \end{array} \right| \begin{array}{l} -\frac{2}{13}a \\ -\frac{1}{3}b \\ b = 3a \end{array}$$

June 2023 – Paper 3H

(Total for Question 22 is 3 marks)

23

Find an equation of the line that passes through C and is perpendicular to AB .

AB gradient

$$\frac{\Delta y}{\Delta x} = \frac{4}{2} = 2$$

Perpendicular to AB

$$\text{gradient} = -\frac{1}{2}$$

$$y = -\frac{1}{2}x + C$$

$$-1 = -\frac{1}{2}(5) + C$$

$$-1 = -\frac{5}{2} + C$$

$$1.5 = C$$

$$y = -\frac{1}{2}x + 1.5$$

25 The straight line L has equation $3x + 2y = 17$

The point A has coordinates $(0, 2)$

The straight line M is perpendicular to L and passes through A.

Line L crosses the y-axis at the point B.

Lines L and M intersect at the point C.

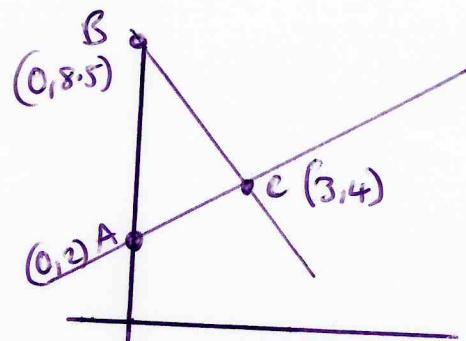
Work out the area of triangle ABC.

You must show all your working.

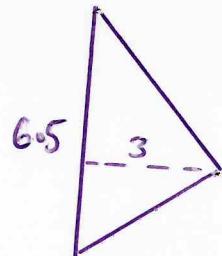
Point B $(0, 8.5)$

$$L \quad 3x + 2y = 17$$

$$2y = -3x + 17$$


$$y = -\frac{3}{2}x + \frac{17}{2}$$

$$M = \quad y = \frac{2}{3}x + C$$


$$2 = \frac{2}{3}(0) + C$$

$$2 = C$$

$$y = \frac{2}{3}x + 2$$

Area

$$\frac{6.5 \times 3}{2} = 9.75$$

9.75

L and M intersect

$$\begin{array}{l}
 \frac{-3}{2}x + \frac{17}{2} = \frac{2}{3}x + 2 \\
 -3x + 17 = \frac{4}{3}x + 4 \\
 -9x + 51 = 4x + 12 \\
 -9x + 39 = 4x \\
 39 = 13x
 \end{array}
 \quad \begin{array}{l}
 \times 2 \\
 \times 3 \\
 \times 3 \\
 -12 \\
 +9x
 \end{array}$$

November 2019 – Paper 2H

(Total for Question 25 is 5 marks)

$$y = \frac{2}{3}(3) + 2$$

$$\underline{\underline{y = 4}}$$

Point C $= (3, 4)$